NASA TECHNICAL NOTE

NASA TN D-6092

AN EXTENSION TO LOWER PRESSURES OF
THE NAVIER-STOKES THEORY FOR THE
VISCOUS FLOW OF GASES BETWEEN
RELATIVELY ROTATING COAXIAL CYLINDERS

b_y Willard E. Meador

Langley Research Center |
Hampton, Va. 23365 .

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. -

LOAN COPY: RETURN
AFWL (DOGL)
KIRTLAND AFB, N. N

NASA TN D-6092
=y

W

DECEMBER 1970

WN ‘gdvN AYVHEIT HOAL



. Report No.

2. Government Accession No.

NASA TN D-6092

3. Recipient’s Cataiog No.

TECH LIBRARY KAFB, NM

AVANER R

0132960

. Title and Subtitle

AN EXTENSION TO LOWER PRESSURES OF THE NAVIER-
STOKES THEORY FOR THE VISCOUS FLOW OF GASES
BETWEEN RELATIVELY ROTATING COAXIAL CYLINDERS

5. Report Date

December 1970

6. Performing Organization Code

7. Author{s} 8. Performing Organization Report No.
Willard E. Meador 1.-7402
10. Work Unit No.
9. Performing Organization Name and Address 129-02-22-01

NASA Langley Research Center
Hampton, Va, 23365

11. Contract or Grant No.

. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

13. Type of Report and Period Covered
Technical Note

14. Sponsoring Agency Code

Washington, D.C. 20546

15. Sruipplementary Notes

16. Abstract

An extension of the Grad 13-moment distribution function is applied to the velocity-
linearized Boltzmann kinetic equation for the problem of viscous gases flowing between two
relatively rotating coaxial cylinders. Precise boundary conditions are employed, and the
results are compared with those obtained by using the obsolete Maxwellian separation of
reflected particles into specular and diffuse groups. The solution is exact through quadratic
terms in the Knudsen number and thus provides reliable generalizations of previous work to
lower pressures; in particular, the Navier-Stokes expression for the torque experienced by
the inner cylinder is shown to suffice for Knudsen numbers extending well into the transition
flow regime if the separation between the cylinders is small compared with their radii. Low-
pressure effects for larger ratios of these distances are compared with calculations based

on the Burnett equations.

17. Key Words (Suggested by Author{s})) 18. Distribution Statement
Gas-surface interactions

Kinetic theory of gases

Unclassified — Unlimited

22. Price™
$3.00

19. Security Classif. {of this report}
Unclassified

20. Security Classif. {of this page) 21. No. of Pages
Unclassified 19

*For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151



AN EXTENSION TO LOWER PRESSURES OF THE
NAVIER-STOKES THEORY FOR THE VISCOUS FLOW OF GASES
BETWEEN RELATIVELY ROTATING COAXIAL CYLINDERS

By Willard E. Meador
Langley Research Center

SUMMARY

An extension of the Grad 13-moment approximation is applied to the velocity-
linearized Boltzmann kinetic equation for the problem of viscous gases flowing between
two relatively rotating coaxial cylinders. Precise boundary conditions are employed in
deriving a velocity distribution function which is exact through quadratic terms in the
Knudsen number and which thus provides reliable generalizations of previous work to
lower pressures; in particular, the Navier-Stokes expression for the torque experienced
by the inner cylinder is shown to suffice for Knudsen numbers extending well into the
transition flow regime if the separation between the cylinders is small compared with
their radii. Low-pressure effects for larger ratios of these distances differ significantly,
however, from the calculations of Lin and Street based on the Burnett equations. At
more moderate pressures corresponding to the retention of terms through the square of
the Knudsen number in the torque and through the first power of the Knudsen number in
the velocity distribution function, the simple Navier-Stokes theory is always valid and
consistent in the problem described,

Results of the present research are compared also with those of Wang Chang and
Uhlenbeck, who use the obsolete Maxwellian separation of reflected particles into specular
and diffuse groups, and with previous formulations based on Chapman-Enskog expansions
and the Grad 13-moment approximation. The more important conclusions are summa-
rized as follows: (1) the velocity jumps at the cylinder surfaces generally follow
Maxwell's original predictions rather than Wang Chang and Uhlenbeck's later modifica-
tions, (2) the basic character of the velocity profile in the midst of the gas does not
change as the surfaces are approached, and (3) 13 moments are insufficient to describe
low-pressure systems.

INTRODUCTION

The problem of viscous gases flowing between two relatively rotating coaxial
cylinders has received much attention both on its own merit and because such systems



are especially suited for the measurement of velocity slip at solid surfaces. (See ref. 1,
pp. 291-300, for the earliest work.) Despite the interest, however, several important
questions remain unanswered concerning the precise kinetic behavior of a gas near a
boundary and the range of validity of the Navier-Stokes expression (ref. 1) for the torque
experienced by the stationary inner cylinder. In particular, the assumption that the
velocity distribution function calculated in the midst of the gas extends uniformly to the
cylinder surfaces needs to be investigated, as does the appearance of terms proportional
to the square of the mean free path in macroscopic relations derived from the second
Chapman-Enskog approximation (ref. 2), More recent research on similar subjects in
the case of plane Couette flow is summarized in reference 3.

A prime objective of the present research is to resolve these difficulties by exactly
solving the corresponding velocity-linearized Boltzmann kinetic equation for Maxwellian
particles through quadratic terms in the Knudsen number and imposing the conservation
of particles, momentum, and energy at the boundaries. These conservation conditions
replace the obsolete Maxwellian hypothesis (refs. 4 and 5) that separates the reflected
particles into specular and diffuse groups and adds contributions to the velocity distribu-
tion function which are nonanalytic in the mean free path (ref. 6). As explained in refer-
ence 3, the Maxwellian hypothesis is nonphysical because it imposes the same accommo-
dation or absorption coefficient for every macroscopic moment of the gas. The restric-
tion to gases of Maxwellian particles (i.e., particles which attract or repel each other
with forces varying as the inverse fifth power of their separation) is not expected to alter

the basic conclusions.

SYMBOLS
c particle velocity
d intercylinder separation distance
D drag force per unit area in limit of infinite cylinder radii
f velocity distribution function
£, Maxwellian distribution function relative to local flow velocity
fo(rl) Maxwellian distribution function relative to stationary inner cylinder
fo(rz) Maxwellian distribution function relative to rotating outer cylinder



8,84

rl,rz

c

contributions to perturbation function

arbitrary velocity function

perturbation function relevant to gas at surface of inner cylinder
perturbation function relevant to gas at surface of outer cylinder
Boltzmann's constant

mean free path

torque per unit length of stationary inner cylinder

particle mass

particle number density

scalar gas pressure

pressure tensor

traceless pressure tensor

heat-flux tensor

cylindrical coordinates (r measured from axis of coaxial cylinders); also
signify vector and tensor components when used as subscripts

radii of inner and outer cylinders, respectively

unit vectors associated with cylindrical coordinate system

time

temperature

particle velocity relative to frame of reference moving with local gas flow,

m )2z -3)

nondimensionalized, (— cC-V
2kT
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C]_’Cz

=

unit tensor
local gas flow velocity

magnitude of gas flow velocity at surface of stationary inner cylinder; also
called slip velocity or velocity jump

magnitude of gas flow velocity at surface of outer cylinder
rotational speed of outer cylinder

mean equlibrium particle speed

body force per unit mass

accommodation coefficient (inner cylinder) for energy absorption

particle velocity relative to stationary inner cylinder, nondimensionalized,
1/2
@)
2kT

slip distance
slip distances relative to inner and outer cylinders, respectively
viscosity
particle velocity relative to rotating outer cylinder, nondimensionalized,
1/2/. -
(i> / (c - QVW)
2kT
mass density

accommodation coefficients (inner and outer cylinders, respectively) for
parallel momentum absorption

accommodation coefficient (inner cylinder) for perpendicular momentum
absorption



o accommodation coefficient (inner cylinder) for parallel heat-flux absorption
(see eq. (34))

—

) first-order perturbation function

w angular frequency of outer cylinder

Special notation:

(%) collisional time derivative

/e

(G) velocity average of G referred to complete distribution function

<G|h1> , <G|h2> velocity averages of G referred to fo(rl)hl and f (rz)hz,

respectively
Vector and tensor quantities without arrows signify magnitudes or components.
GENERAL CONSIDERATIONS

The torque exerted on unit length of a stationary inner cylinder (radius Ty,
infinite length) by the shearing action of a viscous gas flowing between it and a rotating
outer coaxial cylinder (radius ry, infinite length) is given by

- 2
L= -2mr, Pre(rl) (1)

where Pr9 is the rf-component of the pressure tensor

B = (3 -9)(3 - %) @)

Hence, the determination of P, from kinetic theory is the essential task and comprises
the bulk of the present research.

Calculations of such quantities usually begin with the general time-independent
kinetic equation (ref. 2)

'c’.an‘c-__:(_) (3)
C



the mé-moment of which yields the macroscopic equation of motion

<—O> —
V-(P+pU +nm'\7'\7)=0 (4)
£
in the absence of body forces. The traceless pressure tensor is defined by

-

‘9. < —t
P=P - pU (5)

If no temperature gradients are applied between the cylinders, the scalar pres-
sure p depends on the radial distance r only through effects induced by the friction-

generated heat. Since such effects are proportional to the square of the Mach number,
0

as are the diagonal elements of P in the midst of the gas, the direct expansion of equa-

tion (4) gives

el - A ~ [dP 2P
_ - - _ rf ro\ _
vV.P=v-. Kr9+9r)Pr6(r)]— 9< i +——r—)—0 (6)

through first-order (i.e., linear) terms in the flow velocity. A reasonable tentative
assumption (to be confirmed or rejected by the solution of the kinetic equation subject to
boundary conditions) is that equation (6) applies also in the immediate proximity of the

cylinder surfaces.

Although equation (6) is an important differential relation, its utilization in the
present problem is more indirect than direct because the integration constant Pr@(rl)’
rather than the variation of Pr@ with r, is the significant parameter in equation (1).
What equation (6) does provide is a differential relation for the flow velocity v if Py
can be expressed in terms of ¥ through the solution of the kinetic equation. The inte-
gration constants in the solution of the differential equation for ¥ must be related to
boundary conditions at the surfaces and also to the relative rotation rate of the two
cylinders; hence, the procedure for writing L in equation (1) as a function of measur-

able quantities is outlined by this discussion.

Unfortunately, however, the difficulties inherent in cylindrical geometries preclude
exact closed-form first-order velocity distribution functions of the type found for simple
Couette flow between parallel plates (ref. 3); as a result, additional precautions are nec-
essary to ensure complete first-order descriptions of phenomena relevant to cylindrical
problems. Other difficulties arise from the nonlinear character of the velocity profile,
the spatial variations of which are a priori unknown and must be derived according to the

procedure in the preceding paragraph.

M |



KINETIC THEORY

A first-order solution of equation (3) can be written in the convenient form

2 -
=f (1 +¢) = foE +SPguNg + g(r,u)] ("
where g is an unknown function, fj is the Maxwellian distribution function
3/2 o
f = n[ 2= e~4 8
o (ZﬂkT) (®)
and U is a dimensionless particle velocity defined by
1/2
—_ m — —
u={— ¢ -V 9
<2kT> ( ) ®)

All thermodynamic quantities are constant through first order in the absence of applied
gradients, and the flow velocity satisfies

v = 6v(r) (10)

in the present problem.

Since

- dv v

v, = 2f |— - — 11
¢ © C’(dr r)urue (1)

and
1/2|/P dp P

- - {2kT ro ro 2 rg 2
C - V(Preurue) = _(T> KT - T)ur -7 ueJue (12)

the substitution into equation (3) of equations (7), (11), and (12) yields

0 (o]
6f P 1/2 1/2
~ dv v o ro(2kT 2 1.2 2kT -
ZfO(E Dy - 2 (—m‘> (“r " 3% )“9 * fO(_m—) i ve
C(ef\ 26, a(fog)
= (Et-)c = —T Preurug + [—W— c (13)



with the aid of equation (6) and the well-known properties of collision integrals for
Maxwellian particles (ref. 2). The viscosity n correctly represents the detailed colli-
sion dynamics.

Equation (13) is called the velocity-linearized Boltzmann equation because quad-
ratic and higher powers of v are neglected in its derivation. The complexities intro-
duced by the cylindrical geometry are obvious: As r approaches infinity, corresponding
to flat plates, the exact first-order solution is equation (7) with g set to zero. In the
present problem, however, g is more complicated and must contain, at the very least,
some seldom-used elements of the general heat-flux tensor

_ 1/2
G- p(Z“—T) (v (14)

m

More specifically, g can be expressed as

4er9 m 1/2 2 1
_ 2 =
7P <§k—'1_‘> (“r "3 )“9 + &y (o) (15)

in order to balance the (ur2 - %ugz)ue term in equation (13).

The insertion of equation (15) into the collision integral of equation (13) gives the

expression

v _vig g _3Pr9____2kT 1/:?‘uz——l-uzu +l—2kT 1/23-V
dr r/ T % pr \m r 360 /6 2\lm &

1/2 a(f )
1 m 2 1 2 1 081
= ~Prots * o g ) (“r '5“9)“@*%[—3?1 19
C

Accordingly, the P _, term in ¢ is proportional to

lLfdv v
v\dr r

and the erG term is proportional to

2(dv v
rv\dr r



if the mean free path ? and the mean equilibrium particle speed v are defined by

- 21 (17)
ov
and
1/2
= z(ziT.) / (18)
Tm

This analysis permits a definite statement about the physical consequences of
dropping the U . Vg contribution to equation (16) and the collisional time derivative
of fogl to obtain

@ v\ o SProfaT\Y2( 2 1 2\
ar ¢)'rte T Tpr \m r ~3% |Y
1/2
~_1 m 2 1 2
- P ou,. + 3er9<—2kT> (ur -3 % ) uy (19)

The expansion is twofold in the sense that terms proportional to

l (Vw)z 8 Vw

e
rl(rz—rl)

v

are neglected, as are higher powers of 7 and the Mach number vW/\'z of the outer
cylinder at r = ry. (Note that this definition of the Mach number differs by a constant
factor from the one used in aerodynamics.) From this point forward the inner cylinder
is considered to be stationary.

Equations (7), (15), and (17) to (19) combine to give the following first-order results,
which are complete through terms containing the square of the mean free path:

dv v dpl{dv v

= — - — N e et — o — 2

Pro dﬂ(dr r) v (dr r) (20)
1/2
_ 2 _ 21(2kT
ere“ p_;lPrG“ 'r_(wm ) PrG (21)
and

2Prg 41 2 1 2)

o = S Er+1r1/2rur - 54" ||ug (22)



These expressions, together with the differential relation

2
dV+1dV V_O (23)

obtained from equations (6) and (20), complete the kinetic-theory description of the gas
between two relatively rotating coaxial cylinders. They extend the Navier-Stokes repre-
sentation to larger Knudsen numbers through the appearance of 12 terms in the velocity
distribution function; in addition, they are derived from a kinetic equation incorporating
the divergence of the traceless pressure tensor on the left-hand side, which is not normal
procedure in the second Chapman-Enskog approximation (ref. 2).

In line with the discussion following equation (6), the assumption is now made that
equations (20) to (23) are valid in all regions occupied by the gas, including the close
proximity to the cylinder surfaces. The only physical criterion for this assumption is
whether the boundary conditions can be satisfied: If so, the description is accurate
through first order in the flow velocity and through squares of the Knudsen number; if
not, equation (22) is inadequate and higher moments must be considered.

BOUNDARY CONDITIONS

A convenient formulation of equations (7) and (22) for the application of boundary
conditions at the surface (r = rl) of the stationary inner cylinder is obtained from the

following manipulation of equation (8):

3/2
f =M e _ﬂ_(cz -9 2)
0 n(zmer) Xpl:ZkT YooY

~ m = 24
n(Z‘nkT) © {:+ <2kT) WQJ 0(r1)< * /2, 7’9) (24)
where
1/2
7 = (2%1‘) L (25)

Accordingly, the first-order velocity distribution function becomes

t=1(ry) (1 + h1> (26)

10



with

4v 2Pyg 41 ( 1 2)
h, = Y, + Y.+ y.2 - = v, v (27)
1 Trl/2{, 0 p l r g2, \'rT 376 )70

The introduction of h1 permits the conservation laws for particles, the r-, -,
and z-components of momentum, and energy to be expressed at r =ry by the relations

0= e[y (28)

"N1<Vr2|h1>yr<o B <Yr2|h1>yr<0 - <yr2|h1>yr>0 (29)

71 <yr79|h1>yr<o = (7slhy) (30)

“1<yryz|h1>yr<0 = (el (31)
and

O‘1<V2Vr|h1>yr<o - <72Vr|h1> (32)

respectively, where 0, °N1 1 %1 and o, are accommodation coefficients and
the ""bra-ket'" notation refers to velocity averages symbolized by the definition

<G(r1,37)'h1> = % g fo(rl)hle(rli)da (33)

Each of equations (28) to (32) is interpreted in the same manner, the left-hand
sides representing the average amounts of the corresponding macroscopic properties
absorbed by unit surface area in 1 second and the right-hand sides representing the net
fluxes toward the surface of the same properties. As explained in reference 3, these
conditions replace the obsolete Maxwellian hypothesis that the reflected particles can be
separated into diffuse and specular groups relating to a single accommodation coefficient
for all moments. The coefficients are generally different for different moments.

11



Also mentioned in reference 3 is the fact that additional steady-state conservation
laws are superfluous in the sense that they do not constrain the distribution function
beyond what is implicit in equations (28) to (32). For example, the result of imposing
the heat-flux condition

C"1 <y27r7'6|h1>y <0 = <72yr7’9|h1> (34)
r

on equation (27) is merely to write 0'1 in terms of 0y which does not affect the solution
of the kinetic equation in any way because equations (28) to (32) completely define (on the
average) the gas-surface interactions. Yet a restriction similar to equation (34), but
with 0'1 incorrectly equated to 04 according to Maxwell's hypothesis, was imposed by
Wang Chang and Uhlenbeck (ref. 6) and led to complicated nonanalytic (in the mean free
path) contributions to both the distribution function and the calculated macroscopic prop-
erties. Such contributions are not implied by the more general and more correct bound-

ary conditions employed in the present research.

Of the five constraints listed in equations (28) to (32), only equation (30) is satisfied
nontrivially by the perturbation function in equation (27). This condition provides a rela-
tion between the flow velocity vy at r=1ry and the accommodation coefficient o
according to the following development:

11 Pro(ri)f, a
<Yry9’h1>yr<o = ;[‘_f_ -~ (1 - 771‘1) (35)
P r
rrvelhs) - “——rezi 1 (36)
and
vi_ "iPre(ta) (), 4 (37)
v 4pl 7r§’1r1

where Cl satisfies

2 -0,
R Gl 011) (38)

Note that to the slip velocity vy in equation (37) is added a new contribution (the
second term) which originates from the heat-flux tensor element ere (instead of the

12



vector heat flux which vanishes according to the u2d-moment of eq. (22)) and thus is not
predicted by the Grad 13-moment velocity distribution function. Because of the explicit
cancellation of the slip distance Cl and except for the implicit dependence of Pre(rl)
on the same parameter, this term enhances the slip velocity independently of the value

of the accommodation coefficient H in particular, the slip velocity is nonvanishing even
when the average momentum component parallel to the cylinder surface is exactly
reversed (or1 = 2) by the reflection. Although the precise physical explanation of this
phenomenon is not clear, it can be called a geometric effect with some justification
because of the ry in the denominator. As ry approaches infinity, corresponding to a
transition from cylindrical to rectilinear gas flow, the effect becomes negligibly small.

The only previous derivations of the geometric effect, which was not singled out or
discussed as such, were those of Schamberg (ref. 7) and Lin and Street (ref. 8) on the
basis of the third Chapman-Enskog approximation corresponding to the Burnett equations.
Both references give slip velocities which differ from equation (37) by the substitution of
the factor 10/3 for the factor 4 in the second term within the parentheses. Of more
importance, however, is the fact that references 7 and 8 predict the form of the first-
order expression for the velocity slip to be independent of the interparticle interaction
potential; hence, except for the numerical value of the viscosity coefficient, which is
somewhat irrelevant to the present research, strong support is provided for the assertion
that the formal results of this paper are not restricted by the limitation of the detailed
development to Maxwellian molecules.

A similar study relating to the surface (r = rz) of the outer cylinder begins with
the first-order distribution function given by the expressions

f=fo(r2)(1+h2) (39)
3/2 42
fo(r2)= (27rkT) © (40)
and
4(v -V ) 2P
_ 6 41 9 1 2)
h, = bl L -z 41
2 r1/2% Yot p IELr+7r1/2r<H 3t )| “
where Vi is the rotational speed of the surface and [ satisfies
1/2
- m - ~
= [— c-06 42
: (2kT) ( ") (42)
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and continues with the application of the conservation law
h = h
XY, 150 (Hetg|hg) (43)

evaluated at ry.

The relations analogous to equations (35) to (37) are

<“ru9|h2>ur>0 - ;Tl_l-‘-’z ‘:, Yo nPrfp(rz) (1 + :é) (44)
(et ha) = ?ﬁz%) (45)
and
Vi "2 _ _ﬁCzPr9<r2)< 42 > s
7 apl Ty

where vy is the flow velocity at ro and

2 -09})l

£y = _(__0__2_)_ (47)
2

Equations (37) and (46) provide the integration constants for equation (23), the solu-

tion of which can be written

V= WEI (rzz - I‘Z)V1 + 1'2(1‘2 - r12>v2:]

A velocity profile thus exists which conforms both to the simple first-order distribution
function of equation (22) and to the complete set of boundary conditions listed in equa-
tions (28) to (32) at r = ry anda similar setat r= To; hence, the present description
is valid throughout the gas. In particular, the assumption is justified that microscopic
and macroscopic relations derived in the midst of the gas apply also in the immediate

(48)

proximity of the cylinder surfaces,

The remainder of this report is concerned with the computation of the torque exper-

ienced by the inner cylinder.

14



TORQUE ON THE INNER CYLINDER

As is evident from equation (1), the element P .o of the pressure tensor is the
essential parameter for the computation of the torque exerted on the inner cylinder by
the shearing action of the rotating gas. The results of the preceding section are sufficient
to determine this parameter through linear terms in the flow velocity and cubic terms in
the mean free path; in particular, equations (20), (37), (46), and (48) combine to yield

8plr1r2

ro = ‘m_,(rzz ) (F1ve - Tavy)

p

(49)

2r1r2 412 N 4plr1 w
TV

_ 4%
N r7)2 $179Prg (*1) (1 +‘“q—1>+ $9T1Pro(T2) ( T TEyrs

Accordingly, P, (rl) and P, (rz) satisfy the simultaneous expressions

28419 472 28979 472 8pirgv,,
1 1+-27 \p 1- p e 2w
' (ra? - r12)1”1< "y )| Tre(f) ¢ rg? -2\ 7"Erp) T )= (g2 - r2)

(50)
and
2y

2¢.r 2 2¢,1r 2 8pir
roé - ry Tg4Ty (r2 - Ty )rz ”§2r2 TTV(I‘z - Ty )rz

(51)
Finally, the combination of equations (1) and (17) with the angular frequency
v
Y2
and the solution of equations (50) and (51) for Pre(rl) gives
- 47777wr12 2 ; (Cl 3 Czr13)
r22 - r1 ry r - ry 2
4(¢r3 + tor 212 rz)( 2-rz)2
172 2" 1 1 + T /\F2 1
4+ — 5 (53)
2 2 C + EoT )
1 2 271

15



The justification for retaining 13 terms follows from the first equality in equation (49)
and the observation that v, and v, are correct through 12 since the leading contri-
bution to P, appearing in equations (37) and (46) is proportional to 1.

Besides correcting in a general manner the existing expansion (see ref. 1, p. 298)

— -1
3 3
4rnwr 2p 2 2(C ToY + Eor
L= 1 ,24 1 + 1 2 ,,,ZJ_)

rg? - ry? 1’11’2(1"22 } r12>

2
2. 2 3 3 3 3
L dmmeryTry” 1- 2(§1r2 i czrl_) + Ml )_,_ (54)

2 2 2 2 2
re? ~ 1 T, To(le? - T 2. 2 2 2
2 1 12(2 1) r{4rge (rz -r1>

through cubic terms inthe Knudsen number Z/(r2 - rl), equation (53) is applicable for
even greater rarefication if the cylinder separation d= ro - Iy is small compared
with ry. In particular, the neglect of quadratic and higher powers of d/r1 in equa-
tion (53) yields

-1
3

_ 2mery 3d ¢+ 8| 3a (1%
L= {1+ 22311+ 1+ (55)

d 2ry d 2ri\&y + &y

which corresponds to the drag force per unit area
-1
nv. ¢, +€
p=— Y1, 1 2> (56)
d d

in plane Couette flow (ref. 3) as r{ approaches infinity.

Since the approach of ry to infinity, or more precisely the neglect of Z/r1 com-
pared with unity, makes equation (22) an exact solution of the velocity-linearized kinetic
equation, the following reduction of equation (55) is limited only by negligible values of
d/r1 and small values of (Z/d) (VW/\’I>:

3 -1
2rnwr ¢ ¢
Lo <1+ 1; 2) (57)

d

No specific restriction is placed on Z/d by itself; hence, for sufficiently small Mach
numbers of the outer cylinder, equation (57) is valid for Knudsen numbers extending well
into the transition flow regime. Actually, the limitation on d/r1 need not be quite as

16




strict as stated because the contribution to L from the term in equation (22) which does
not survive the approach of ry to infinity also does not survive the elimination of quad-
ratic and higher powers of d/r; in equation (53). Thus equation (55) is no more
restricted than equation (57) as far as the Knudsen number is concerned and permits
larger values of ~d/r1.

I ¢ 1 and Cz are each equated to ¢, equation (57) becomes identical with the
very early (1913) expression deduced by Timiriazeff (ref. 1, p. 298). The preceding
discussion explains why this formula was found to hold closely even down to pressures
where it was expected to fail on the basis of less rigorous kinetic theory. Validity cri-
teria available at that time were based on the Knudsen number alone instead of the quan-
tity (2/d) (VW/\_') suggested by equations (20) and (22).

Another consequence of equation (53) is that low-pressure reductions in the torque
are enhanced by the same geometric effect discussed in the paragraph following equa-
tions (37) and (38). For example,

2. 2 2f. 2 2
z47r77a)r1 ry - 81 (rl + Iy )

L 2

(58)

2 2 2
rod - ry Ty

in the absence of the conventional contribution to the velocity slip, that is, with 04

and 0y equated to 2 or Cl and CZ equated to zero. The physical explanation of this
effect, which is not predicted by the Grad 13-moment approximation because it derives
from seldom-used elements of the complete heat-flux tensor, is again not apparent.

Nevertheless, the geometric effect may be very important at low pressures and for
the intercylinder separation a sizable fraction of ry. The significance is illustrated by
the following sample calculations for rg = Zrl and the slip distances Cl and CZ

equal to I:
167r77wr12 37 912
L= — = 1 - === (59)
3 I‘l T 2
1
from equation (54) and
16mwry® [ 5y 5 gog2
L= —— - |1-22422 (60)

3 r 2
1 rl

from equation (53). A decrease of 35 percent occurs in the last term in parentheses,

17



CONCLUDING REMARKS

The velocity-linearized Boltzmann equation is solved in the present research for
the problem of viscous gases flowing between two relatively rotating coaxial cylinders.
Boundary conditions corresponding to the conservation of particles, momentum, and
energy are used in place of the obsolete Maxwellian hypothesis that the reflected particles
can be divided into diffuse and specular groups. Unlike the results of Wang Chang and
Uhlenbeck, who employed the Maxwellian hypothesis and thus restricted the accommodation
coefficients to a single value for all moments, no nonanalytic (in the mean free path) con-
tributions to the velocity distribution function are found. Hence, the use of the mean free
path as a perturbation expansion parameter is valid, at least for the terms retained in
this report which is the complete specification through linear terms in the Mach number
and quadratic terms in the Knudsen number.

Calculated results include the generalization to cubic terms in the Knudsen number
of the Navier-Stokes expression for the torque exerted on the inner cylinder by the
shearing action of the flowing gas. Grad's 13-moment velocity distribution function is
shown to be insufficient for this purpose; in particular, seldom-used elements of the com-
plete heat-flux tensor are required unless the separation between the cylinders is small
compared with their radii. If this last condition is satisfied and the relative Mach number
of the rotating cylinders is sufficiently small, a major restriction on the mean free path
is removed and the present formulas are valid for Knudsen numbers extending well into

the transition flow regime.

Besides defining and comiparing the limitations on various expressions for the
torque, the present research introduces contributions to the velocity slip and the torque
which, except for a shear factor in the slip, act independently of the gas-surface accom-
modation coefficients for parallel momentum absorption. Although the physical interpre-
tation of these contributions is not clear, their effects can be very substantial at low pres-
sures and for intercylinder separations which are sizable fractions of the radii. They
are not predicted at all by the 13-moment distribution function and are predicted incor-
rectly by previous applications of the Burnett equations.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., October 9, 1970,
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